

БАРЬЕРЫ **ИСКРОЗАЩИТЫ** ЭнИ-БИС-Ех

Методика поверки ЭИ.85.00.000МИ

info@en-i.ru www.eni-bbmv.ru

СОДЕРЖАНИЕ

1	ОБЩИЕ СВЕДЕНИЯ	4
2	ОПЕРАЦИИ ПОВЕРКИ	4
3	СРЕДСТВА ПОВЕРКИ	4
4	ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	5
5	УСЛОВИЯ ПОВЕРКИ	6
6	ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ.	6
7	ПРОВЕДЕНИЕ ПОВЕРКИ	6
8	ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	9
ПЕ	РИЛОЖЕНИЕ А Схемы поверки	10

1 ОБЩИЕ СВЕДЕНИЯ

- 1.1 Настоящая методика распространяется на барьеры искрозащиты ЭнИ-БИС-Ех (далее барьеры), изготавливаемые компанией ООО «Энергия-Источник», предназначенные для преобразования аналоговых сигналов силы и напряжения постоянного тока, электрического сопротивления от датчиков, источников питания и других технических средств контроля и автоматики, расположенных во взрывоопасной зоне, в аналоговые сигналы силы постоянного тока, в сигналы реле, передачи этих сигналов во взрывобезопасную зону, а также для питания пассивных датчиков, расположенных во взрывоопасной зоне и устанавливает методику их первичной и периодических поверок.
 - 1.2 Интервал между поверками составляет 2 года.

2 ОПЕРАЦИИ ПОВЕРКИ

2.1 Перечень операций, которые должны проводиться при поверке барьеров с указанием разделов настоящей методики, где изложен порядок их выполнения, приведен в таблице 1.

Таблица 1 — Перечень операций

Наименование операции	Обязате проведения	Раздел	
•	первичной	периодической	методики
Внешний осмотр	Да	Да	7.1
Опробование	Да	Да	7.2
Проверка основной приведенной погрешности	Да	Да	7.3
Оформление результатов поверки	Да	Да	8

3 СРЕДСТВА ПОВЕРКИ

- 3.1 При проверке основной погрешности барьеров предел допускаемой суммарной абсолютной погрешности эталонов, используемых для воспроизведения сигналов, подаваемых на входы поверяемых барьеров и измерения сигналов, получающихся на их выходах, не должен превышать 1/3 предела допускаемой основной абсолютной погрешности поверяемого барьера в соответствующей поверяемой точке.
- 3.2 При проверке основной погрешности барьеров рекомендуется использовать: для заданий входного сигнала силы посто-

янного тока — калибратор многофункциональный и коммуникатор BEAMEX MC6 (-R), регистрационный номер в Федеральном информационном фонде № 52489-13 (далее —рег. №) или источник калиброванных сигналов ЭнИ-201И, рег. № 48840-12; для измерений выходного сигнала силы постоянного тока — меру электрического сопротивления Р331, R=100 Ом, кл.т. 0,01, рег. № 1162-58 с мультиметром Agilent 34401A, рег. № 16500-98 или мультиметр цифровой прецизионный Fluke 8508A, рег. № 25984-14. Для задания входного сигнала сопротивления рекомендуется использовать магазин сопротивлений МСР-60М, рег. № фонде 2751-71, или Р4831, рег. № 6332-77.

- 3.3 Вспомогательные средства:
 - ЛАТР, 2000 B·A, 0...250 B;
 - блок питания Matrix MPS-6003(5)/L-3, выходное напряжение: 0...60 В;
 - измеритель влажности и температуры ИВТМ-7М2-01, диапазон измеряемых температур от –45 до +60 °C, диапазон измерений относительной влажности от 0 до 99 %:
 - барометр БАММ-1, диапазон измерений давления от 80 до 106 кПа.

Примечания:

- допускается использовать другие эталонные средства измерений, если они удовлетворяют требованию п.3.1;
- перечисленные выше средства измерений должны работать в нормальных для них условиях, оговоренных в соответствующей эксплуатационной документации.

4 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 4.1 К работе с барьером должны допускаться лица, прошедшие инструктаж по технике безопасности при работе с установками напряжением до 1000 В, ознакомленные с Руководством по эксплуатации.
- 4.2 Обслуживающему персоналу запрещается работать без проведения инструктажа по технике безопасности.
- 4.3 По способу защиты человека от поражения электрическим током барьеры относятся к классу III или 01 (в зависимости от модели) по ГОСТ 12.2.007.0.

4.4 Работы по монтажу и демонтажу должны производиться при выключенном напряжении питания.

5 УСЛОВИЯ ПОВЕРКИ

- 5.1 Поверку проводить при следующих условиях:
 - температура окружающего воздуха (23 ± 2) °C;
 - относительная влажность воздуха 30...80 %;
 - атмосферное давление 84...106 кПа;
 - напряжение питания (24 \pm 0,5) В, (36 \pm 0,5) В постоянного тока или (220 \pm 10) В переменного тока с частотой (50 \pm 1) Гц в зависимости от исполнения барьера;
 - внешние электрические и магнитные поля должны либо отсутствовать, либо находиться в пределах, не влияющих на характеристики прибора.
- 5.2 Время выдержки барьера после включения питания перед началом испытаний не менее 15 минут.

6 ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ ПОВЕРИТЕЛЕЙ

6.1 К поверке барьера допускаются лица, аттестованные в соответствии с нормативной документацией, имеющие опыт поверки средств измерений, прошедшие инструктаж по технике безопасности в установленном порядке и изучившие настоящую Методику поверки, эксплуатационную документацию на барьер и средства поверки.

7 ПРОВЕДЕНИЕ ПОВЕРКИ

7.1 Внешний осмотр

- 7.1.1 При внешнем осмотре барьера проверить:
 - наличие маркировки;
 - отсутствие внешних повреждений;
 - состояние клемм и разъемов;
 - надежность присоединения кабелей;
 - отсутствие обрывов заземляющих проводов.
- 7.1.2 Эксплуатация с механическими повреждениями корпуса, соединений, наличием загрязнений между контактами не допускается.

7.2 Опробование

- 7.2.1 Собрать схемы, приведенные в приложении А, в зависимости от наименования барьера.
 - 7.2.2 Подать напряжение питания.
- 7.2.3 Задать входной сигнал конца диапазона с помощью ЭнИ-201И в зависимости от исполнения согласно таблицам 2—4. Для барьера ЭнИ-БИС-207-Ех входной сигнал задать с помощью двух магазинов сопротивлений $R_{\rm M1}$ и $R_{\rm M2}$ согласно таблице 5.
- 7.2.4 Убедиться по таблицам 1—5, что значение выходного токового сигнала соответствует заданному входному сигналу с учетом погрешности. Значение выходного токового сигнала получают косвенным методом, измеряя напряжения на мере электрического сопротивления, и рассчитывая значение тока по формуле 2.

7.3 Проверка основной приведенной погрешности

7.3.1 Поверка барьеров проводится по схемам А.1...А.5 приложения А в зависимости от наименования барьера.

7.3.2 Для барьеров ЭнИ-БИС-201-Ех...ЭнИ-БИС-204-Ех, ЭнИ-БИС-211-Ех, ЭнИ-БИС-212-Ех, ЭнИ-БИС-214-Ех, ЭнИ-БИС-221-Ех, ЭнИ-БИС-221-Ех, ЭнИ-БИС-301-Ех-АІ-1к, ЭнИ-БИС-302-Ех-АІ-1к, ЭнИ-БИС-320-Ех-АІ-1к-Н входной сигнал задают с помощью ЭнИ-201И в зависимости от исполнения согласно таблицам 2...4. Значение выходного токового сигнала получают косвенным методом, измеряя напряжения на мере электрического сопротивления, и рассчитывая значение тока по формуле 2. Расчет основной приведенной погрешности осуществляют по формуле 1:

$$\Delta = (I_{\text{M3M}} - I_{\text{pacy}}) / (I_{\text{B}} - I_{\text{H}}) \cdot 100 \%, \tag{1}$$

где І_{изм} — измеренное значение выходного тока, мА;

I_{расч} — расчетное значение тока на выходе, мА;

I_в, I_н — нижний и верхний пределы выходного сигнала, мА.

$$I_{\text{M3M}} = U / R, \tag{2}$$

где U — измеренное напряжение на мере электрического сопротивления, B;

R — сопротивление меры электрического сопротивления, Ом.

- 7.3.3 Для барьера ЭнИ-БИС-207-Ех входной сигнал задают с помощью двух магазинов сопротивлений $R_{\rm M1}$ и $R_{\rm M2}$ согласно таблице 5. Значение выходного токового сигнала получают косвенным методом, измеряя напряжения на мере электрического сопротивления, и рассчитывая значение тока по формуле 2. Расчет основной приведенной погрешности осуществляют по формуле 1.
- 7.3.4 Барьер считается прошедшим поверку, если наибольшее из полученных значений основной приведенной погрешности не превышает предела допускаемой основной приведенной погрешности.

Таблица 2 — Значение выходного сигнала

Диапазон изменения		Диапазон изменения выходного сигнала						
входного сигнала І _{вх} = 05 мА		I _{вых} = 05 мА				I _{вых} = 420 мА		
Измер знач	яемое ение	Расчетное значение выходного сигнала						
I _{BX} , MA	U _{BX} , B	Івых, мА	U _{вых} , В	Івых, мА	U _{вых} , В	Івых, мА	U _{вых} , В	
0,000	0,0000	0,000	0,0000	0,000	0,0000	4,000	0,4000	
1,250	0,1250	1,250	0,1250	5,000	0,5000	8,000	0,8000	
2,500	0,2500	2,500	0,2500	10,000	1,0000	12,000	1,2000	
5,000	0,5000	5,000	0,5000	20,000	2,0000	20,000	2,0000	

Таблица 3 — Значение выходного сигнала

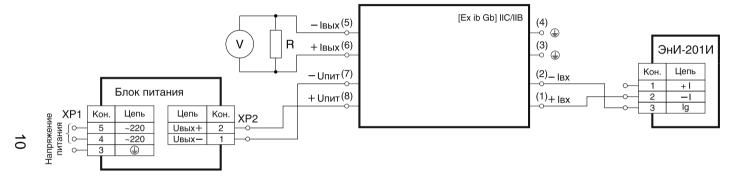
rasinga s ona istino prixoditore similaria								
Диапазон изменения		Диапазон изменения выходного сигнала						
	сигнала 20 мА	I _{вых} = 05 мА				I _{вых} = 420 мА		
	яемое ение	Расчетное значение выходного сигнала						
I _{вх} , мА	U _{BX} , B	Івых, мА	U _{вых} , В	Івых, мА	U _{вых} , В	Івых, мА	U вых, В	
0,000	0,0000	0,000	0,0000	0,000	0,0000	4,000	0,4000	
5,000	0,5000	1,250	0,1250	5,000	0,5000	8,000	0,8000	
10,000	1,0000	2,500	0,2500	10,000	1,0000	12,000	1,2000	
20,000	2,0000	5,000	0,5000	20,000	2,0000	20,000	2,0000	

Таблица 4 — Значение выходного сигнала

Диапазон изменения		Диапазон изменения выходного сигнала						
входного І _{вх} = 4		I _{вых} = 05 мА				I _{вых} = 420 мА		
Измеря значе		Расчетное значение выходного сигнала						
I _{вх} , мА	U _{BX} , B	Івых, мА	U _{вых} , В	Івых, мА	U _{вых} , В	Івых, мА	U _{вых} , В	
4,000	0,4000	0,000	0,0000	0,000	0,0000	4,000	0,4000	
8,000	0,8000	1,250	0,1250	5,000	0,5000	8,000	0,8000	
12,000	1,2000	2,500	0,2500	10,000	1,0000	12,000	1,2000	
20,000	2,0000	5,000	0,5000	20,000	2,0000	20,000	2,0000	

Таблица 5 — Значение выходного сигнала

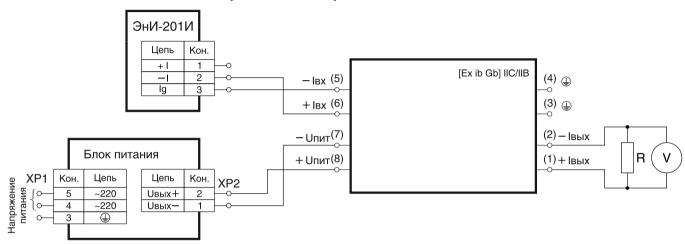
Диапазон изменения		Диапазон изменения выходного сигнала						
	ого сиг		I _{вых} = 05 мА			I _{вых} = 420 мА		
	еряемо пачение		Расчетное значение выходного сигнала					
R _{м2} , кОм	R _{м1} , кОм	U _{вх} , В	Івых, мА	U _{вых} , В	Івых, мА	U _{вых} , В	Івых, мА	U вых, В
0	10	0,0	0,000	0,000	0,000	0,000	4,000	0,400
2	8	1,0	1,000	0,100	4,000	0,400	7,200	0,720
4	6	2,0	2,000	0,200	8,000	0,800	10,400	1,040
6	4	3,0	3,000	0,300	12,000	1,200	13,600	1,360
8	2	4,0	4,000	0,400	16,000	1,600	16,800	1,680
10	0	5,0	5,000	0,500	20,000	2,000	20,000	2,000


Примечание — В таблицах 2...5 приведены значения измеренных напряжений для меры электрического сопротивления с номинальным сопротивлением 100 Ом.

8 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1 Результаты поверки барьера оформляют свидетельством о поверке с указанием результатов поверки на его обратной стороне (или протоколом произвольной формы) или записью в паспорте, заверяемой подписью поверителя с нанесением оттиска поверительного клейма или знака поверки в виде наклейки.
- 8.2 При отрицательных результатах поверки барьер к эксплуатации не допускается, оформляется извещение о непригодности к применению.

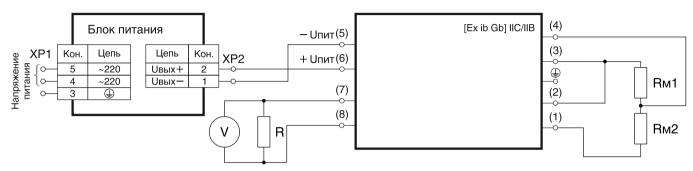
ПРИЛОЖЕНИЕ А


Схемы поверки

R — образцовая катушка сопротивлений R331 100 Ом;

V — мультиметр РС5000.

Рисунок А.1 — Схема поверки ЭнИ-БИС-201, 202, 211, 212-Ех



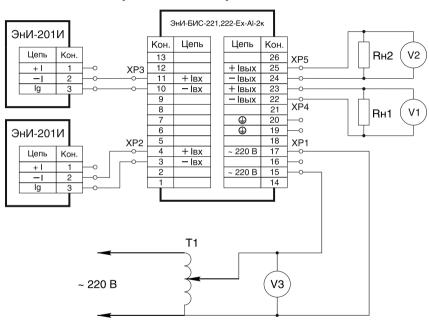
R — образцовая катушка сопротивлений R331 100 Ом;

V — мультиметр РС5000.

Рисунок А.2 — Схема поверки ЭнИ-БИС-203, 204, 214-Ех

Продолжение приложения А

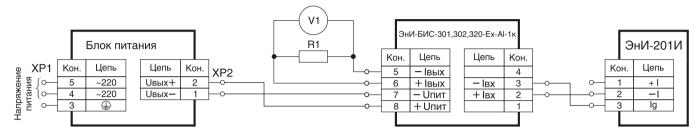
R — образцовая катушка сопротивлений R331 100 Ом;


V — мультиметр РС5000;

2

R_{м1}, R_{м2} — магазин сопротивлений.

Рисунок А.3 — Схема поверки ЭнИ-БИС-207-Ех


Продолжение приложения А

 $R_{\rm H1},\,R_{\rm H2}$ — образцовая катушка сопротивлений R331 100 Ом; V1, V2, V3 — мультиметр PC5000; T1 — ЛАТР.

Рисунок А.4 — Схема поверки ЭнИ-БИС-221, 222-Ех

Продолжение приложения А

R1 — образцовая катушка сопротивлений R331 100 Ом;

V1 — мультиметр PC5000.

Рисунок A.5 — Схема поверки ЭнИ-БИС-301, 302, 320-Ex-Al-1к

ООО «Энергия-Источник»
454138 г. Челябинск, пр. Победы, 290, оф. 112
Отдел продаж: тел./факс (351) 749-93-60, 749-93-55, 742-44-47
Служба техподдержки: тел. (351) 751-23-42
E-Mail: info@en-i.ru
www.eni-bbmv.ru